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1. INTRODUCTION

Outwardly, gun barrels appear axially symmetric. Yet, when a gun is fired, the barrel
temperature rise is typically not axisymmetric. For instance, instead of the tamnaratyre rising
" uniformly at a given axial location, firing may elevate the barrel temperature more on the left
side than on the right in one area, and more on the bottom than the top in another area, or
vice versa. Any cross-barrel temperature difference (CBTD) will producs a cross-barrel
therma! expansion difference that causes off-axis bending of the barrel durihg fiing. This
thermal bending/distortion decreases tank gun accuracy and'is, therefore, a situation to be
avoided. (The CBTD referred to here, AT, is cefined as t.'je difference between the
temperatures at the two intersection points on the outer wall of the barrel fermed by a line in
the transverse piane passing through the center of the bore. A similar CBTD for the inner
wall, AT, will be introduced later. The difference between the lengths of the two segments
between inner and outer walls formed by this same line is called the "wall thickness |

variation.")

The terme "bore centerline” (or "centerline”) and "centerline deviation™ are now introduced.
Consider an infinite set of planes intersecting the gun barrel so that the inner wall forms a
circle in each plane. Then the locus of the centers of these circles is the three-dimensional
centerline curve. When there is no bending of the gun tube, the centerline is straight,
coinciding with the rotation axis of the machining tool. In a given longitudinal plane through
the rotation axis, the centerline trace is a curve that deviates slightly from the rotation axis; the -
amount of displacement (normal to the rotation axis) is the centerline deviation. ‘

The source of CBTD has long been a topic of discussion/speculétion (Manaker and
Croteau 1976; Bundy 1987a, 1987b). For example, in the case-study of Bundy (1987b), test
results indicated a possible correlation between CBTD and the centerline deviation. (In a
plane passing through the rotation axis, the temperature rise was generally greater on the
same side of the rotation axis as the centerlire deviation.) Apparent correlations and
speculations aside, we shall show that wal! thickness variation will indeed produce CBTD.

To predict the CBTD due to wall thickness variation during firing, we shall solve the time-
dependent, two-dimensional (radial and circumferential) equations that govern heat transfer




into, through, and out = & gun barrel by the method of finite differences. Primarily, results
will be computed for « . .. .ific, but typical, production-line M256 120-mm gun barre! and for a
service-acceptable, yet atypical, production-line barrel. '

To provide some understanding of the origins of wall thickness variation; we shall briefly
describe the gun barrel manufacturing process. It will become apparent that wall thickness
variation and centerline deviation are related, to some degree, as a consequence of the
manufacturing proceés. Thus, the apparent correlation noied by Bundy (1 '987!)) batween
CBTD and centerline deviation may—more fundamentally—be a correlation between CBTD

and wall thickness variation.
2. THE GUN BARREL MANUFACTURING PROCESS

Much effort has been devoted in the manufacturing process of large-caliber guns to
minimizing lateral wall thickness variation. In general, circularity of the-inrier and outer surface
is not the problem—ccncentricity is. That is, wall thickness variation is caused primarily by
the non-alignment of the axes of rotation of the inner and outer surfaces of revolution during
their machining. It is conjectured that this comes abuut as follows.

After removal from the forge anc heat treatment (to relieve residual forging stress), the
barrel is ready to be "finished" (a multistep process to bring the rough forged barrel to its final
Jesign/drawing specifications). The inner surface is finished first, which means that it is
bored, honed, swaged, and thermally treated to help relieve swaging stress, then bored again,
and honed again. It has a rela'tiveiy straighi centerline before finishing work is begun on the
outer surface. Initially, the axis of rotation for machining the outer surface is the same as the
axis of the inner surface (i.e., the bore centerline, see Figure 1a). However, when metal is
removed by turning down the outer surface, it reiieves non-uniform residual swaging stress,
which causes the varrel to "spring® or bend off-axis. Whenever and wherever this happens
during machining, it misaligns the bore centerline from the rotational cxis of the yet-to-be
finished outer surface, and thus produces both lateral wall thickness variation and bore
centerline deviation in the gun barrel. As illustrated in Figure 1b, the wall thickness variation
will be twice the centerline deviation at—and only at—the place where material is being cut,
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since stress relief at a new cut site will change the centerline deviation everywhere along the
barrel including pravious cut sites (Figure 1c). Furthermore, it is common practice to attempt
to mechanically straighten a gun barrel (with a hydraulic press) during or after machining.
Nevenheléss. we might expect that some residual correlation between centerline deviation
and wall thickness variation will remain along the finished barrei, as illustrated in FigUre 1d.

In Figures 2 and 3 we have plotted the centerline deviation and wall thickness variation
along the bore for a typical production-line M256 gun tube, serial number 4251. Due to the
imitations of the centerline measurement technique, the renterline deviation is plotted relative
to the line joining its two end measurements. To be conc’sient, we have likewise plotted the
wail thickness variation relative to its two end measurements. Clearly, centerling deviation

- and wal! thickness variation are not correlated by the simple 2:1 ratio indicated in Figure 1b

(where stress is relieved at only one location along the barrel), yet the two factors do tend to
oppose each other in a fashion consistent with Figure 1d (where stress has been relieved ct
multiple locations). That is, the wall thickness variation is generally positive where the
centerline deviation is negative (see Figures 2 and 3), which implies tﬁe thinner wall is on the
same side of the axis of rotation as the centerline deviation.

Lastly, in the manufaciuring process, the outer surface is ground slightly (while tuming),
followed by chrome plating of the inner surface. These finishing steps can dlso change the
wall thickness variation and the centerline curvature, but the change is usually less than 25%.

For the M256 gun barrel, specifications (McDermott 1991) call for the wall thickness
variation to be no more than 1.5 mm over most of the barre! (with the exception of the
chamber area, which has closer tolerances). In actuality, however, most M256 barrels are
manufactured, like serial number 4251 (Figures 2 and 3), with less than 0.5 mm wall thickness
variation (Overocker 1991).

A wall thickness variation oi 1.5 mm will correspond to less than 10% of the total wall
thickness, depending on the location along the barrel. However, such a wall thickness
variation will produce an equiva.ent variation in the temperature rise between one side and the
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other. }For instance, if the nominal barrel temperature rise from firing a round is 10°C at a
location where the wall thickness varies by 10% between one side and the other, then the
CBTD will be approximately 1° C at this site. This CBTD will increase if the gun is fired
rapidly. For reference, Bundy (1987b) showed that a 2° to 3° C change in the CBTD over a
relatively short length of the barrel (<1 m) will produce a muzzle angle change of several
tenths of a miliradian. We shall show that almost any "fast” rate of fire will yield a CBTD of
several degrees if the wall thickness variation approabhes the maximum allowed by current
manufacturing guidelines. |

3. THE HEATING MODEL

We shall compute the CBTD for multiple firings by employing an extension of the model
used in Gerber and Bundy (1991). The following assumptions apply here:

(1) Temperature gradients in the lonlitudinal direction are neglected in comparison with
| .
those in the radial direction. (The! longitudinal axis is taken to be a localiy straight
segment at the transverse plane under consideration.)

(2) Axisymmetric heat input is assuqed, and gravity effects in the cooling process
~ are neglected. ’

(3) Feedback of barrel heat to flow in the gun bore is neglected, so that the same bore
temperature and convective heat transfer coefficient histories (for a single round)
furnish the input data for every round calculated.

(4) Friction heating is neglected.

(5) Thermal expansion of the barrel is not considered to have an effect on the heat
transfer process.

(6) The thermal conductivity, k, the specific heat, Cor and the density, p, of the
metal are constants (see Chapter 5). '




(7) The offset distance () between the axes of the inner and outer walls is very
small compared to the radii of the walls themselves. For example, in the
extreme case for the M256 120-mm gun, the axes displacement would be less -
than 1 mm, while the inner radius of the barrel would be at least 60 mm.

4. FORMULATION OF THE PROBLEM

4.1 Statement of Prbblem. We state our problem in terms of cylindrical coordinates 7, ¢,
and 2. Figures 4a and 4b show the transverse plane viewed from the muzzle. The axial
coordinate z s taken to be zero at the gun's breech (Figure 4¢). The z-axis coincides with the
centerline of the bore (i.e., the axis of the inner wall surface), which intersects the r, ¢ plane at
the origin, O. (Note, the right-handed coordinate system that we have chosen is consistent
with the reference system of most interior ballistics models. However, it differs from the so-
called gunner's coordinate system, which chooses ¢ 3 positive x-axis to lie on the gunner's
right, which is our negative x-axis.) The radii of the inner and outer walls, referenced to their
individual axes of rotation, are R; and R,, respectively. In our model we assume that the axis
of the outer wail is displaced to the right of the axis of the inner wall by a distance ¢ to
simulate the imperfection of manutacture. The radius of the outer wall relative to the origin

will be designated by r = r,, (¢).

At a given axial location, 2, the gun‘ barrel temperature, 7(r.9.t), is determined by the
following differential equation of heat conduction for a stationary, homogeneous, isotropic solid
‘with no internal heat generation (Holman 1981, p.6):

RTiRr2 + (1/1)aTIor + (1/r2)R T1392 = (1/0) AT/, (1)

where t = time from the initiation of the first round. The constant a = k/{p cp) is the therma!
diffusivity. | .

Let T designate the ambient temperaturé of the atmosphere (assumed to be constant).
Then the initial condition is ‘ ‘




X, = -x, =Ry :
Xy = Ro"'c X Whenr = Ro.

X, = R+ ¢ b= ¢ - (e/R;) sin ¢’

(c)

Figure 4. Transverse cross section of a qun barrel of nonuniform thickness, viewed in a
and b) from the muzzle, and in ¢) from an oblique angle of the breech.
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T(9) = T. =0, RiSrsr(¢) (2= const). @

The boundary conditions at the inner and outer walls are obtained by Newton'’s iaw of
cooling (see, e.g., Ozisik [1968]). The axisymmetric boundary condition at the inner wall is

K3TRr - hyT = -h,T, r= R, t>0 (z = consf), (3)

where T,(t,z) is the cross-sectional average température of the flow in the bore, and hg(t,z) is
the coefficient of heat tiansfer between the gas-particle mixture in the bore ard the inner wall
of the barrel. Tg(t,z) and hg(t,z) are known from interior ballistiq computations and thus

constitute input.

The outer wall boundary condition introduces azimuthal variation into the problem. The
outer wall equation is

fo = [R2 - €2sin?¢]"2 + £cos¢.

Wae restate one of the basic assumptions,
 e<<A,R, 4)

and retain only terms through first order in €. Then for the outer wall,

fowPRo+ecose¢ . (8

The boundary condition here, which includes both convective and radiative cooling
(Ozisik 1968, Equations 1~28 and 8-137c; Gerber and Bundy 1992, Equation 4), is

-koT/dn = h (T-T,) + Fo(T* - f:) r=r,,t>0 (2= const), (6)

where d7/0n is the component of grad T normal to the barrel surface, and h,_ = h,_ (2) is the
coefficient of convective heat transter between the barrel wall and the surrounding
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atmosphere. F s the radiation interchange factor between the barre! outer wall and the
environment (in our case, we assurne F = 0.95), and ¢ is the Stefan-Boltzmann constant
[=5.669 x 108 (P s K4).

A unit outward veétor normal to the outer wall (correct through O(e)) is U, = [1, e(1/n)sin ¢}; . , '
grad T = [0770r, (1/r) 3T/3¢). Then, aT7/dn = U, - grad T in Equation 6. On the line i
r= R, + € cos ¢, Equation 6 becomes ' ' '

- K[IT/ar + (efrP)sin ¢ 3TT0] = hu(T - T) + Fo(TH-T2) )

Applying the expansion
Folr = Ry + £ COS §) = Fp(Ro) + (@F,/3r)p € cos ¢ + O(e?) ,

(where F,, is any function of r) to Equation 7 leads to

oT _|2°T e .. . (3T _ (aT
k 7+[a'r2]e:covsq> +?3.§m¢(.§$J h,,[T T. +€cC0S ¢(_a..r.]]+

Fo[T‘ -7 4 4e T3(a1'/ar)cos¢] + O(€?) atr=A,. (8)

To retain linearity in the outer wall boundary condition, we apply the reas&nable approximation
that | T™' = T™|<<T™atr= R, Here the superscript m + 1 refers to tAe current time step
of calculation, while m denotes the immediately preceding time step when [T is known. Thus,

1 1
(Tarer ) = 4(Tar1® TR - 3(Tana)®

which is linear in T,(Z:: . The subscript NI + 1 denotes r = R,,.

10
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42 Sgecial Form of Solution. When a solution of the form*

T = Ty(rt) + £C0S 6 Ta(nt) . (9y

is substituted into Equations 1, 2, 3, and 8, the 2-D problem is reduced to two
one-dimensional (1-D) problems by collecting terms for each power of € cos ¢. The
statements of these two problems now foliow: ' '

(1/a) 3T,/3t = R Tyor2 + (1/r) AT for (10a)
T(h)=T.  t=0 RSrsh, (10b)
KATRr = ho(Ty - Ty) reR, t>0 (10¢)

KTy /31 + [ha + 4FS(TP1Ty = haTo + FolT2 + 3(T)*)

reRy t>0, (10d)
~and .
(1/a) ATy/at = RT3/ar2 + (1r) ATofar - (Nr?) T (11a)
Ta (f) = 0 t=0, RiSrs<A, (11b)
k 3T3/0r = hy T3 r=R;,t>0 (11c)
ATy/3r + (h. + 4FGTy) Tyl k = W(T;) reR, t>0, (11d)
where

* The choice of T, instead of T, for the perturbation was made to maintain consistancy with the nomenciature of the
computer program. ‘

11




W(T,) = 32T, / 3r2 - (h. + 4FGT2)(dT,13r)/ k

r=Rgy t=tm1, . (12)

The first problem is the axisymmetric problem previo'usly solved (Gerber and Bundy 1991,
1992). The second problem is coupled to the first through the outer wall boundary condition
(Equation 11d). The function W(T,) is a known quantity at the time of soluticn, so that the two

problems can be solved in tandem.

4.3 Transformed Radial Coordinate. We introduce 2 transformation, as in Gerber and

Bundy (1991, 1992), |
rer@) 0sEs<1), (13)

so that the constant increment A will cluster the nodal points closely together near the inner
wall, where T,(rt) gradients are largest, and spread them out away from there. We define the
transformation in the following two steps

CE=y5+(1-7N8 (0<yst, p>2), r=D{+R. (1)

where D= R, - R, and y and P are chosen constants. We have used y=0.092, § = 2.25.
Note that r = A, R, correspond to § = 0, 1, respectively. The actual computations are then
carried out in the (, §) space; a restatement of the problems in § and t is provided in

Appendix A.

4.4 Wall Temperatures. The wall temperatures are of particular interest, especially that of
the outer wall, which is the most easily measurable. At the inner wall,

TimT(r=R) =T, (Rut) + € coso Ty (Rit). (15)
At the outer wall,

Tom T(r=R, +ecos¢) = T, (R,t) + ecosd [0Ty/or + T3],. Ry (16)

where (9T,/dr) at r = R, is given by Equation 10d (or Equation B-11a).

12




A diameter cutting across the gun oarrel is properly described by the angles ¢/ = ¢1’ and
¢/ =44’ + = (see Figure 4b). Since ¢ =¢’ + O (¢) (Figure 4b), ¢ may be replaced by ¢/ in
Equations 15 and 16 withcut changing the accuracy of the approximation. '

Equation 9 indicates that the entire azimuthal variation of temperature is contained in the
cos ¢ factor. Since T, (r, § < 0 in Figure 5, Equations 15 and 16 show that 7;,and T, vary
from a maximum &t ¢ = x to a minimum at ¢ = 0.* The maximum changes in tem'pefature
across the diametars of the inner and outer walls are, respectively,

AT;u Ti(¢ =x) - Tj(¢ =0) = -2¢ T3(R;t) - (17a)

ATom To(d =) - To(¢ =0) = -2 [T5 + 3T1/ar],_no . (17b)
Calculations indicate that generally j(dT,/dr)/ T3 | A, S G.005, so that

AT, = -2e T4(R,. 1) .

Thus, at a given station, 2, for a particular round, the maximum CBTDs are proponionall tos,
to the order of our approximation.

5. INPUT DATA
A detailed discussion of the input to the computations is given in Gerber and Bundy

(1991). Briefly, however, Tg is computed at chosen stations along the bore from the NOVA
code (Gough 1980) and hg is computed from the Veritay code (Chandra and Fisher 19693,

1989b), which uses Tg and other NOVA variables to determine hg by the method of Stratford

and Beavers (1961).

* T, can actually become positive late in a long cooling cycle (see Chapter 7;.
13
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Figure 5. Single-round histories of T, at inner and outer walls at two axial stations.

Figures 6a and 6b show representative Tg and h, histories at two stations on an M256
120-mm gun barrel. It is seen that Tg and hg remain constant until the base of the projectile

passes the given station at time t = f,. At this time, these variables rise suddenly, then they
T,.

g

decrease more gradually with hg decaying significahtly faster than

All the computations reported here were performed for the case of an M256 120-mm tank
gun firing a DM13 round.* However, the results are not expected to change significantly for

other round types. The values of properties of the gun barrel metal are taken to be
Cp = 469.05 J/(kg K)
k ='38.07 J/im s K)

p = 7,827.0 kg/m® .

* Table | of Gerber and Bundy (1991) describes the shape and size of the gun barrel.
14
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The diffusivity is thus

a = 1.03698 x 1075 in?s.

The ambient condition constants are

T. = 2944 K (unless otherwise stated)

h. = 6.0 kg/(s® K).

The above value of ¢, was measured in 1990 by Joseph Cox, Benet Weapons Laboratory, for
M256 gun barrel steel (assumed to be ASI 4340) at 295 K. The values for k and p were
obtained from Talley (1989) for 4335 steel. The value for h_ was obtained from experiments
conducted by Bundy on a shrouded M256 barrel.

6. FINITE-DIFFERENCE CALCULATION

For the finite-difference calculations, the interval 0 < & < 1 (corresponding to Risr<R)is
divided by equally spaced nodal (or grid) points into N/ subintervals. The constant &
increment is AE = 1/N|, ahd iocation of the nodes is given by §]= (j-1)AE (j=1,2,..Nl +1).
Derivatives at node j are zpproximated as follows (for H= T,, T,):

QHDY; = (3Hy + 4H.1 - H)(2 85) (=) (18a)
(3H/BE); = (Hyy - Hog)(2 AE) (= 2,...,NI) | (18b)
(QHIBE) = (Hj.p -4H;_y + BH)/(2 AE)  (j=NI+1) (18¢)
(PHIBE2) = (Hj.1 ~2H; + H M8 (j=2,...NI). (18d)

16
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It we let the time increment be At = t™1 _ t™, then, in the Crank-Nicolson scheme employed
here (Ozisik 1968, p. 402) to obtain the solution at time t = t™",

(12) [(aH/at),m + (aH)ar),m.a]- (H™*' - H™at. (19)

The finite difference approximations to the equations and boundary conditions are
produced by substituting the derivative approximations of Equations 18 and 18 into Equations
A-4 and A-5, and then collecting terms. After some labor, one obtains the following two sets

of linear equations for T, ™" and T, ™:

Nis1

2 A" T;':'d ® dl | (I - 102- oo N’§1) (20)
net

N+t . |

Y B e (etzeNm) on
el _ |

The cbemdents A,, . B,, , dl' arid e, are given in Appendix B. The djs and ejs invoive T, and
T, values calculated for the previous timestep t = t™. A standard FORTRAN routine Is applied
to solve Equations 20 and 21; in most cases, we have used N/ = 100.

There are essentially two time scales in the present problem: 1) the duration of the firing
(roughly 100 ms) and 2) #, the time between firings (usually 5 seconds or more when firing
large guns). The At should be sufficiently small to resolve the phenomenon in case 1 but
should be larger in case 2 to save time in computation. The program contains a subroutine
prescribing At as a function of t within a firing cycle (see Appendix C).

The coefficients in the heat conduction equation and boundary conditions are known
functions of . Thus, only a single iteration is required to obtain the solution to the finite-
ditference equations. The Crank-Nicolscn method is stable for all values of At, and there are

ne restrictions on the relative sizes of At and AE.

17




N

o
b N S e R AR S SRR AP ey e ot R bt

7. COMPUTATIONS

- We apply our numerical simulation to ah investigation of the nonaxisymmetric barrel
temperature resulting from an imperfect alignment of inner and outer wall barrel axes in an
M256 120-mm gun. Most of the CBTD plots that follow are shown for £ = 1 mm. The CBTD
for aﬁy other displacement is readily obtained from these plots by multiplying the temperature
ditference values by ¢ in millimeters, since AT; and AT, are both proportional to € |

~ (Equation 17).

First, we show results for a single round. Figure 7 presents unperturbed (axisymmetric)
barrel temperature histories, T,, while Figure 5 includes the variation of the perturbation
function, T, at the same location. In both instances, the functions tend to approach constant
values across the barrel in finite umes, as evidehced by the coalescing of the curves for the
inner and outer walls. The time for the radial equilibration of 7, was referred to as the outer-
wall rise time, t,, In Gerber and Bundy (1991). For consistency, we shall continue to use this
designation here. Furthermore, we shall refer to the radial equilibration time of T; as the rise
time t,4. There is no exact criterion for defining rise time; an estimate can be made on the
basis of inspection of the curves. For the example shown in Figures S and 7, {5 is
considerably larger then t,. The cos ¢ factors in Equations 15 and 16 prevent circumferential
equilibration as long as‘ T, Is non-zero. In Figure 5, T, appears to approach zero with time.

Next, we consider constant rate-of-fire. The first example (at 2 = 4.30 m) deals with slow
rate-of-fire (l.e., t,and t,5 < &, where t,is the time interval between successive rounds). Here
;= 60s, f,~26s, and 1, ~ 45 s. Rise times are essentially independent of number of
rounds fired, but they depend on local barrel thickness. Figure 8 shows T,, the symmetric
part of 7, at the inner and outer walls as functions of time. The upward-facing spikes for the
inner wall represent the rapid rise in temperature produced at the time of firing; the
succeeding rapid decline occurs when heat input stops and heat is conducted into the interior
of the barrel. It is seen that T, (R,) lags behind T, (R;) in each cycle in the rise from its pre-

- firing value. This lag is a consequence of the time required for a significant effect of the

thermal disturbance applied at the inner wall to reach the outer wall.

18
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Figure 9 presents the AT; and AT, histories for this same case. The inner and outer wall
curves coincide roughly over the latter portion of each firing cycle because the firing interval is
large enough so that radial equilibration is reached before the next round is fired. Except for
the first round, when AT, = AT, = 0 prior to firing, there is @ downward-facing spike at the inner
wall coinciding in time with the input of heat from the combustion. This is understandable;
heat flux from the bore gas to the barrel is proportional to (Tg - T;), and thus, more heat will
be flowing into the thicker, cooler side, raising T; faster there than on the thinner, hotter side.
This will decrease AT, for an initial period of time. However, since the cooler side is thicker,
the rise in 7, will eventually be less on that side, thus accounting for the overall positive AT,

following the initial downward-facing spike.

For each round, the AT, will begin to rise after the heat pulse from the inner wall reaches
the outer wall on the thinner side (located at x, = -R,, + € in Figure 4). The effect of the wall
thickness asymmetry is then propagated inward, and the time taken for the resulting

‘perturbation to spread to the inner wall accounts for the lag in Figure 9 of the rise of AT;

behind that in AT,. T{x,) and T{x;) (Figure 4) reach maxima because the energy input is
finite; AT, = T{x,) - T{x;) eventually peaks and then decreases as the barrel cools and CBTD

equilibrates. At the inner wall, the heat perturbation due to the asymmetry is expérienced at

x, sooner than at x; AT; = T{x,) - T{x,) varies in a manner similar to that of AT,,, its
amplitude in a firing cycle being less than or equal to A7,.

Figure 10 shows inner and outer wall maximum CBTDs at z = 4.30 m for a fast rate-of-fire.
Again, the downward-facing spikes occur on the AT, curve. In this case, however, t;< t,4;
thus, there is insufficient time during a round for the radial equilibration of T3 to be reached.
The AT, does not attain a maximum, and AT, always remains larger than AT,.

Figure 11 shows the CBTDs at a different station, z = 2.78 m, where the nominal wall
thickness D = 0.050 m, in contrast to D = 0.023 m at 2= 4.30 m. Even though # = 60 s here
as in Figure 9, the t,, is large enough so that t; < t,; and a fast rate-of-firc heating pattern
results. Note that the CBTDs are much smaller at 2 = 2.78 m than at 2= 4.30 m.

Next, we simylate an actual firing scenario (Table 1) in which there are fast and slow firing
rates and cool-down periods. The gun is an M256 120-mm tank gun, serial number 4251,
firing DM13 rounds. Note, this is the same gun barrel that was used earlier to illustrate
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Table 1. Firing Scenario

1) Srounds - ,=120s  5) 10 rounds -- f;= 36 s
2) 960s cool-down 6) 600 s cool-down
3) 10rounds -- 4, =180s 7) 4rounds-- t,= 180 s
4) 1,020 s cool-down 8) 600s cool-down

(Figures 2 and 3) wall thickness variation (= 2¢) ard centerline deviation for a typical M256
barrel. Table 2 shows the variation of & (without regard to its angular orientation, e, and ay)
and barrel average thickness, D = A, ~ R;, along the gun. Figure 12 shows the inner and
outer wall CBTDs computed, for example, at z = 3.950 m for the firing sequence of Table 1.
For the fast- and slow-fire bursts, the curves resemble, qualitatively, corresponding plots
shown in the previous figures. Radial equilibration (AT; = AT,) takes place early in the cooling
cycles.
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Table 2. Axes Separation in Test Gun

Il z[m] : D[mm) : e[mm]
1.300 76.00 0.115
1.800 65.74 ‘ 0.055
2.350 42.98 ~0.130
2.850 ’ 4902 0.125
3.450 49.02 0.027
3.950 25.31 ‘ 0.056
4.450 22.65 0.100
5.020 20.81 0.065
5.090 17.12 | 0.075
5.240 17.06 0.080
028 1 LAl
0.20 | Tint =288.7 K,z = 0.056 mm
" D=253mm '
= 0.15
o 0.10
Q.
£
- 0.05
0.00
_0.05 1 . 1 1 1 1 ]
0 1000 2000 3000 4000 5000 6000

t[s]

Figure 12. Histories of AT, and AT at 2 = 3.95 m, firing scenario of Table 1, with cooling to
: environment. S
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A notable feature in Figure 12 is that AT, becomes negative on two occasions
(t=3,700 s; 5,800 s). The physical implication here, recalling the definition of AT, in
Equation 17b, is that the thin side (/2 < ¢ < 31/2) is originally hotter in a firing cycle than the
thick side (- /2 < ¢ < =/2), but actually becomes cooler than the thick side later in the cycle.
Basically, the reason that this happens is: at high temperatures, heat efflux from the barrel to
the environment is higher than circumterential (equilibrating) heat flux within the barrel. Since
the thin side has less thermal mass, its temperature drops faster from heat loss to the
environmént than on the thick side. Eventually_. the temperature on the thin side is lower than
that of the thick side, so that a reverse circumferential heat flow is required to bring about an
even temperature distribution. If there were no heat loss to the surroundings, the iatter
phenomenon would not occur, and AT, would not change sign, as is demonstrated in
Figure 13, |

P

0.30 AT
A

Tint = 288.7 K, &€ = 0.056 mm

025 F p=253mm

2=3.95m

0.20

Temp dif [K]
o
]

0.10
0.05
0.00 1 ! 1 1 ! J
0 1000 2000 3000 4000 5000 6000

t[s]

Figure 13. Histories of AT;and AT at z=3.95 m for an adiabatic outer wall condition,
firing scenario of Table 1.
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Theoretical support for the above discussion on the sign change in AT, can be drawn from

. an approximate analysis for cool-down that yields an analytical solution to the heat transfer
~ problem. This model, which omits radiation cooling for simplification, is outlined in

Appendix D. It estimates the time of crossover of AT, when there is convective cooling to the
environment. It alco demonstrates the absence of an undershoot without convective cooling;

thus, in Equation D-10, f, » =« as h_ -,

8. CBTD DUE TO WALL THICKNESS VARIATION IN PRODUCTION LINE M1A1
GUN BARRELS

A wall thickness variation bn the order of 2 mm (e = 1 mm) can create a substantial CBTD

after repeated firings {(e.g., Figure 9). However, most M256 gun barrels manufactured since

the late 1980s have a wall thickness variation far below thisi‘value. as discussed in Chapter 2.
This chapter investigates the CBTD that can be expected frc;:m 1) "today’'s" typical production-
line M256 barrels, and 2) an atypical barre! that has the maximum allowable wall thickness

variation. I
|

To illustrate the typical case, we have again chosen gunf tube serial number 4251,
manufactured in September 1987, and described in Chapter 2 (Figures 2 and 3) and
Chapter 7 (Table 2). The magnitude of the CBTD will incre?se with € and decrease with D.

One of the largest £'s and smallest D's for this barrel occurs at z=4.45m, where € = 0.1 mm

. and D=22.65 mm. To assess the greatest CBTD buildup that could be expected to occur at

this location, we have chosen the worst-case firing scenario used in Gerber and Bundy (1992)
and enumerated in Table 3. The firing sequence represent§ (approximately) the case where
all rounds in the M1A1 tank are fired as fast as possible. Figure 14 shows the computed
CBTD at this location for the firing scenario of Table 3. It can be seen that the maximum
excursion in CBTD is less than 1.5° C. Such a small temperature change for this worst-case
scenario indicates that thermal distortion due to wall thickness variation in this, or any similarly
made, barrel will not be a serious problem.

On the other hand, if, on the rare occasion, a gun barrel is manufactured with the

maximum allowable wall thickness variation of 1.5 mm (e = 0.75 mm) at this same location,
then the CBTD for the firing scenario of Table 3 would be 7.5 times larger than that shown in
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Table 3. Worst Case Firing Scenario

g 1. 17 rounds at 7 rcunds/min
2. 5 minute cool-down
3. 17 rounds at 7 rounds/min
— 4. 5 minute cool-down
§. 7 rounds at 7 rounds/min
6. Cool-down
1.5
f‘ / 2= 445m
~a ; ‘,‘ ‘é D=22.65mm .
S b ) s /A
¢ - ! i H AT,
- O o5 |4 . : LAl
| e
‘ i
g
_o's 1 1 A J
0 500 1000 1500 - 2000
t [s] :

Figure 14. Worst case CBTD for M256 qun barrel, serial number 4251 (typical production
, line barrel). |

Figure 14 (based on the fact that AT, ;s proportional to e [Equation 17]). In this case, the
CBTD would be greater than 10° C, and according to our earlier discussion, the change in
muzzle pointing angle would probably exceed 0.5 mrad, noticeably degrading gun accuracy.
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In summary, the CBTD that arises during firing due to wall thickness variation is expected
to be relatively small for most gun barrels manufactured today. However, the current
tolerances would allow a gun barrel to be put into service that couid develop a large CBTD
during firing and hence, perforin poorly from a thermal distortion/ :'n accuracy standpoint.
Thus, consideration should be given to lowering the acceptable v. 1l thickness variation to the
same level that most barrels now have, viz., € < 0.25 mm outside the chamber.
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We repeat the transformation of Equation 14:

CE) =vEs(1-NE  (0<751,8>2) r=D{+R. (A1)

Then
dc)dt =l =y+B(1-9)EP! PR m ) - m-” (1-v)§5'2
¢ = RO URSEY IR
n U M =BE-NO-Y. A2)
We define f,(€) and K(&): | |
| ho= G P,

f = (DIT/ (DG + R - &/ 1T P (A-3)

The transformed problem for T, is
AT/t = (a/D2)[f,(E) 32T,/3k2 + 1,(E) 3T, /3] = G(&,1) , (A-43)

kdTi/3& -DhyyTy=-DhygyT,  §=01>0, (A-4b)

[k/(DA)]3Ty/0E + [h. + 4Fc(T"P] Ty = h.T. + Fo[T2 + 3(T,")*]

E=1,1>0. (A-4c)
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The transformed problem for Ty is

ATy/ot = (a/D2)[fy, P T3/0E2 + f, 9TR/3E) - (a/r?)T,, (A-5a)

[k/(DY)] 3T3/3¢ - hy T3 = 0 tE=0,t>0, (A-5b)

[1/(Dh)] 3T3/3E + (h.+4FaT:)Tylk = W(T;)

E=1, t>0, ‘ (A-5c)

where ris given in Equation A-1, A, is given in Equation A-2. Tg and hg are known functions
of t. WT,)is defined in Equation 12 and is evaluated in Equation B-11e.

~ The initial conditions are

T1-T.. t-O. °S§S1
T3 =0 t=0, O0sSEsT. (A-6)
)
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COEFFICIENTS IN EQUATIONS 20 AND 21
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The following functions of & are defined in Equations A-1, A-2, andA3: L rnt. 07, fy0 by

Also defined are y= U/ (0), A, = & (1), Ay = {’/ (1). The equations are solved for t= t™;

¢t™ denotes the preceding time step, when all quantities are known.

" Three additional functions of & are as follows:

gy = (D?) [#/(AE)? - £,/(2 AE)],
& = -(20/D?) K(AEP,

93 = (a/D?) [H/(AE) + £/(2 AE)).

The coefficients A, and d;in Equation 20 are now given:

A1‘-3f2A§ D'th/k. A12-'4' A13‘.1'

ANt N1 =10 ANt = -4

Aniat,Nist =3 + (288 DMy /K) [ha + 4Fa(TyT )°] atreR,.

For2<js NI,

Ao =-(Bt2) gy (&), & =(J-1)85

Ag=1-(82) 2(8),  Ayger = - (A42) g3(2)) -

37

(81)

(82)

(B-3)

(B-4)




All other coefficients A,, are equal to zero.

dy =2 AL Dy hyTylk,

dras = (2 A8 DAL T, + Fo{T2 + 3( T,zm)‘}j.

For2<j< N,

d = T,'I" + (at2) G",

where

G =1 &) i), + 0l&) T + 05(&) Ty .

Now the coefficients B;, and g;in Equation 21 are given:

By = Ay, Bip=Ajp,  Byjg=Ag.

Brnia,ni-r =10 Bua,m = -4,

Bria1,Nist = 3 + (2 AE DMy/K) [ha+d Fo (T )3 ).

For2sj<s NI,

2
81.1_1 - A/J'1' Blvl = i.j + (a At/2)/rl , 81'1,1 - A[',]0-1'

All other coefficients B, are equal to zero.

6 =0, 6y, =204 A W( 71':,:1)-
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\ where W(T1’r';;:1)' defined in Equation 12, is approximated by the following sequehce.
evaluated at t = t™, where r and € subscripts denote partial differentiation:
= = m ‘
’ / KTy (€=1) = ha T + FolT2 + 3(T )4
' ' _ : m . \3,pMme ‘ i
e o tho+4Fo(Tyy PITiG,. (11
i
E8
L | | Ty&=1) = DX Ty (G=1), (B-11b)
, .. ) ) ) | o
r,“m-n/{z(ag) BT~ iy 7 Tiy, g1 #(3788) Ty (1), (B-110)
o . .
; . 2 )
Tigl) = (VD) EL(1A) Tog, (1) - (/XD Ty (11, (B-11d)
1.
- me1 : m+1 .3 4
For2s/s M,
o= Ty, + Ar2)G - (Ar2) (a/rf)Ta';'. | (B-12)
Y - where =m
_ G =ag:(§)) 737_1 + 58 /)Ta'; + g3§ /)7'3::1- - (B-13)
I
3
P,
L.
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APPENDIX C:
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Here, time = t’ will refer to time within one firing cyde; ¥ =0atthe beginning of the cycle.
Six constants are given: 1y, ;, t'y, t'5, At’y, and A,. Here, t,is the delay time for the rapid

rise in T, and hg'from initial conditions, and #; is the time between successive firings. The
time increment At (t') is given by the following function:

At=t - AL, 0sSt < ty- AL,
At At ty- At St <t
At=C, + Cyt’ tystt,
At=At, tost,

where

'Cy= (AFy - AF)t, - ty) and C, = A, - C, 1,
(HF + ALy > ty, Set At =1, 1),

A typicalkset of values of the parameters would be the following:

t',=0018s, t,=100s, Af,=000025s, Af,=6.0s.
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APPENDIX D:

ANALYTICAL MODEL OF COOLING
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The coalescence of the inner and outer wall cooling curves in Figures 5, 7, and 12
suggest that temperature may be approximated at fixed z by the following expression after
radial equilibration in 7, and Ty is attained:

T=Ty(t) + (ecose) T3 (1),

(0-1)

where 'F, and ‘Fa are T, and T, values for t> t,, 1,4 that are constant at this time. We
consider a control volume of unit axial length and a quadrant cross-section bounded by:

() r=ARy;(2) r=r,= R, +€cosé; (3) ¢ = 0; (4) ¢ = w/2. We shall retain terms only through

O(e). In addition, we assume

The rate of change of heat energy in the control volume is

. x/2 Ry + eCOSY |
Hb-L L}v ** pc,(dT/dt)rdrde

Heat flux through the inner wall is
Fi= [ng(T. - T)Rido
Heat flux through the outer wall, neglecting radiation, is

o= [ ha(T - T)(Ro + ecose) dp

(D-2)
o (D-3)
J/s. (D)
J/s: ; (D-5)

There is no heat flow across ¢ = 0 because of the physical symmetry in the problem. The

heat flow rate across the plane ¢ = =2 is

. A, »
Fy = [oo " 5% (KIr) (3T130), « n12 0F
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The energy balance equation is

Hy = H; + H, + FI¢ . | (D-7)

Equation D-1 is substituted into Equations D-3, D-4, D-5, and D-6. When these equations
are substituted into Equation D-7, and coefficients of like powers of € are collected, we obtain
linear first-order ordinary differential equations for 7, and T3. The solution is

Ty= Tu o [Tylte) - Toloxpl-cy(t - 1)1, |  (0a)
T3 = cp 0xp[=cy (1 - ta)] + [T3(ta) - col exp-c5(t - 1,)] .‘ (D-8b)
where
& = 2h./lpcy(R, - A | o)
¢ = (ha!k) (R + R)ITy(ty) - T.VI(R, - R) In(RS/R)] (D-9b)
ey =y + [2KIn(RyR)) [pcy(RE - RD)] . (D-9¢)

The quantities T, (t,) and T (t,) are finite-difference results for r= R, ata time t=¢t, (> ¢,
t,3), chosen so that 7, (1,) < 0 (or AT, > 0). The time of undershoot, ¢, , is found by setting

73 in Equation D-8b equal to zero:

ty = ta + [pGp(R2 - RY)/{2 kIn (Ry/R)}]

w inly - T3tk (Ro - Ry In(R,/A) (D-10)
Pe (Ao * RN Ts(ta) - 11 |
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As an example, assume a scenario in which five rounds are fired 120 seconds apart
 before the final 'cooling starts. In this case, Equation D-8 would predict AT, as shown in -
Figure D-1. The agreement between analytical and numerical solutions for '
AT, (~ -2¢ T; (R))) is very good.

0.4 Exact calc.

& Analyt. approx.

0.3
= 0.2 H 2=4.30 m, No radiat.
X . _
}__o \ e=0.0001m
< 0. E
0.0
A A - ray
-0.1 L ] 1 ] ] 1

0 1000 2000 3000 4000 5000 6000

t [s]

Figure D-1. Comparison of AT, cooling histories for analytical model and nun‘1erical output
(t, = 1,000 s).
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LIST OF SYMBOLS

An By coefficients in linear equations for T, and T,, Equations 20 and 21
cp specific heat of gun barrel (,Jo.ulgs/[kg K) - .
| €y G G : constants definad in Equations D-9 |
CBTD cross-barrel temperature difference
g ¢ coefficients in linear equations for T, and 7,, right-hand sides of
Equations 20 and 21
D =R,- R [m mm]
f, b given functions of § Equation A-3
F R radiation interchange factor, Equation 6
919293 functions of &, defined in équation B-1
G (&) function of £ and ¢, defined in Equations A-4a and B-s
Gt _ function of § and f, deﬁneé in Equation B-13
hg (t2) heat transfer coefficient - bore gas to gun barre! (Joules/{m? s K})
| h, (2) | ~ heattansfer éoefficlent -gun b‘arrel‘ to ambient air (Joules/{m? s K})
/ subscript index indicating adivél location of a nodal point
k | thermal conductivity of gul barrel (Joules/{m s K})
m superscript index ihdicatin§ time value
n | arc length along line normal to the surface of the outer wall
NI number of intervals in A, < r< A, formed by the nodal points
r radial coordinate in transverse plane [m, mm] (r = 0 at axis of gun bore)
r " radial coordinate in transverse plane {r’ = 0 at axis of outer wall)
[ = I(¢) = radial coordinate of outer wall = R, + € cos ¢
R; radius of circular inner wall {[m, mm]

51




T Tint

wmT,)

By -
At

radius of circular outer wall [m, mm]
time from initiation of first round [s, ms, min]
initial time for analytical model, Equations D-8 [s]

delay time at given z for rapid rise in Tg and hy [s. ms]

time interval between successive rounds

rise time for 7, [s, ms]

rise time for T, [s, ms]

time at which AT, changes sign, Equation D-10 [s]
time measured within a firing cycle [s, ms]

two prescribed time values in Timescale formula, Appendix C [s]
temperature in the gun barrel [K] |
= T (t) = temperature in the bore at a fixed z-value [K]

temperatures at irner and outer walls, respectively, of gun barrel [K],
Equations 15 and 16

axisymmetric contribution to barrel temperature, Equation 9 [K]

function furnishing non-axisymmetric contribution to barrel temperature,
Equation 9 [K/m] ’

analytical approximation to 7, and T, respectively, Equétion D-1
temperature in ambient air [K]

unit vector normal to the outer wall )

function of T, defined in Equation 12, evaluated in Appehdix B
axial coordinate (z = 0 at breech) [m]

= Kip ¢;) = thermal ditfusivity of gun barrel [m?/s]

prescribed consants in transformation formuia, Equation 14

time increment for calculation of temperature profile, Equation 19 {s)
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AT,

O

A
.

At/ at)

two prescribed time increments in the Timescale formula, Appendix C

8]

temperature difference between points x, and x, in Figure 1, cee
Equation 17a '

temperature difference batween points x, anchxy In Figure 1 see
Equation 17b : )

constant increment in & in range 0 S & < 1; AE = 1/NJ

distance between the centers of the inner and outer walls of a gun
barrel [m] ,

- transformation variable, given in Equation 14, also Equation A-1

= ¢ (1), U’/ (1) - - constants defined in Equation A-2

transformed radial variable, Equations 13 and 14, also Equation A-1
density of gun barrel metal [kg/m®] |

Stefan-Boltzmann constant = 5.669 x 1078 J/(m? s k*)

azimuthal coordinate in transverse plane

azimuthal coordinate in transverse plane relative to origin at center of
outer wall (Figure 1b)
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